Powered By Blogger

lunes, 8 de noviembre de 2010


Fase luminosa cíclica

En la fase luminosa o fotoquímica cíclica interviene de forma exclusiva el fotosistema I, generándose un flujo o ciclo de electrones que en cada vuelta da lugar a síntesis de ATP. Al no intervenir el fotosistema II, no hay fotólisis del agua y, por ende, no se produce la reducción del NADP+ ni se desprende oxígeno. Únicamente se obtiene ATP.
El objetivo que tiene la fase cíclica tratada es el de subsanar el déficit de ATP obtenido en la fase acíclica para poder afrontar la fase oscura posterior.
Cuando se ilumina con luz de longitud de onda superior a 680 nm (lo que se llama rojo lejano) sólo se produce el proceso cíclico. Al incidir los fotones sobre el fotosistema I, la clorofila P700 libera los electrones que llegan a la ferredoxina, la cual los cede a un citocromo bf y éste a la plastoquinona (PQ), que capta dos protones y pasa a (PQH2). La plastoquinona reducida cede los dos electrones al citocromo bf, seguidamente a la plastocianina y de vuelta al fotosistema I. Este flujo de electrones produce una diferencia de potencial en el tilacoide que hace que entren protones al interior. Posteriormente saldrán al estroma por la ATP-sintetasa fosforilando ADP en ATP. De forma que únicamente se producirá ATP en esta fase.
Sirve para compensar el hecho de que en la fotofosforilación acíclica no se genera suficiente ATP para la fase oscura.
La fase luminosa cíclica puede producirse al mismo tiempo que la acíclica

Los pigmentos fotosintéticos y la absorción de la luz

Los pigmentos fotosintéticos son lípidos que se hayan unidos a proteínas presentes en algunas membranas plasmáticas, y que se caracterizan por presentar alternancia de enlaces sencillos con enlaces dobles. Esto se relaciona con su capacidad de aprovechamiento de la luz para iniciar reacciones químicas, y con poseer color propio. En las plantas se encuentran las clorofilas y loscarotenoides; en las cianobacterias y las algas rojas también existe ficocianina y ficoeritrina; y finalmente, en las bacterias fotosintéticas está la bacterioclorofila.
La clorofila está formada por un anillo porfirínico con un átomo de magnesio en el centro, asociado a un metanol y a un fitol (monoalcohol de compuesto de veinte carbonos). Como consecuencia, se conforma una molécula de carácter anfipático, en donde la porfirina actúa como polo hidrófilo y el fitol como polo lipófilo. Se distinguen dos variedades de clorofila: la clorofila a, que alberga un grupo metilo en el tercer carbono porfirínico y que absorbe luz de longitud de onda cercana a 630 nm, y la clorofila b, que contiene un grupo formilo y que absorbe a 660 nm.
Los carotenoides son isoprenoides y absorben luz de 440 nm, pudiendo ser de dos clases: los carotenos, que son de color rojo, y las xantófilas, derivados oxigenados de los nombrados anteriormente, que son de color amarillento. Las ficocianinas y las ficoeritrinas, de color azul y rojo respectivamente, son lípidos que se hayan asociados a proteínas originando las ficobiliproteínas.
Como los pigmentos fotosintéticos tienen enlaces covalentes sencillos que se alternan con enlaces covalentes dobles, se favorece la existencia de electrones libres que no pueden atribuirse a un átomo concreto.
Cuando incide un fotón sobre un electrón de un pigmento fotosintético de antena, el electrón capta la energía del fotón y asciende a posiciones más alejadas del núcleo atómico. En el supuesto caso de que el pigmento estuviese aislado, al descender al nivel inicial, la energía captada se liberaría en forma de calor o de radiación de mayor longitud de onda (fluorescencia). Sin embargo, al existir diversos tipos de pigmentos muy próximos, la energía de excitación captada por un determinado pigmento puede ser transferida a otro al que se induce el estado de excitación. Este fenómeno se produce gracias a un estado de resonancia entre la molécula dadora relajada y la aceptora. Para ello se necesita que el espectro de emisión del primero coincida, al menos en parte, con el de absorción del segundo. Los excitones se transfieren siempre hacia los pigmentos que absorben a mayor longitud de onda, continuando el proceso hasta alcanzar el pigmento fotosintético diana.

No hay comentarios:

Publicar un comentario